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N O N L I N E A R  O S C I L L A T I O N S  OF A V A P O R  B U B B L E  
IN T H E  R E G I O N  OF T H E  M A I N  R E S O N A N C E  

S. N. Syromyatnikov UDC 532.525 

Nonlinear spherical vapor bubble oscillations in the main resonance region in a viscous incompressible fluid 
under the action of a periodically varying external pressure are considered using the multiscale method. 
Saddle-node type bifurcations that appear when the amplitude or frequency of the external effect changes are 
investigated. 

The operation of heat exchangers is substantially affected by vapor cavitation, which is observed with changes 
(in particular, periodic) in the pressure in the fluid. To study the processes occurring during vapor cavitation, a theory 

is needed that would describe the dynamics of vapor bubbles subjected to periodic changes in pressure. The present- 

day theory provides the most successful description of the dynamics of a radially pulsating single vapor bubble [1, 

2 ]. However, the available works do not analyze the pattern of transition from regular to random oscillations when 

the external parameters of the effect exerted on a nonlineady oscillating bubble change. On the other hand, since 

the oscillating bubble system is nonlinear, the effect of the parameters on the character of the oscillations is not 

unique, and the problem requires a separate investigation. 

Earlier, the behavior of a vapor bubble was studied in the case of a resonance external effect (co -- coo) [3 ]. 

In the present work, using the multiscale method [4 ], the main resonance region co ~-- coo was considered. The 
multiscale method was rather efficiently utilized for investigating nonlinear vibrations of gas bubbles in an 
incompressible fluid [5 ]. 

As a mathematical model of the pulsations of a bubble, the following equation was adopted, which takes into 

account the fluid viscosity [6 ]: 

'2~r 4~t ( dR 

where 

i )  d p, - - ~ ( R J )  + 

J )-- P'(R, ~)=o,  
P 

(1) 

P (oo, -~) -_-P* - -  Pa cos f~ .  

This equation describes the dynamics of a single vapor bubble in an acoustic field with account for heat and 

mass transfer on the bubble walls. The vapor mass flow through the cavity walls is denoted by J. The bubble itself 

is located in an infinite space filled with a viscous incompressible fluid. It performs spherically symmetric vibrations 
under the action of pressure periodically varying at infinity, P (oo, 3). 

The vapor pressure in the bubble P'(R, ~-) is determined as [71 

P'  (R, ~) = Po (1 + 11 + ]2), (2) 

where PO = P~ + 2cr/Ro; jl and j2 are the contribution to the change in P'(R, 3) due to heat and mass transfer, 
respectively. 

Institute of Thermal Physics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg. 
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 65, No. 2, pp. 164-170, August, 1993. Original article 
submitted October 19, 1992. 

1062-0125/93/6502-0745512.50 @1994 Plenum Publishing Corporation 745 



Let us introduce the following dimensionless variables: 

1 t ,1,2 o 2o 
~_zff_) ; c o = ~ ;  W - - - - - - -  

t = ~ o x ;  f~ = Ro f~o . RoPo 

b =  2p~ . ~ _  J . Pa 
' / % - - U  = 

p *  P .  
= l - - ~ ;  = g = (1 -,-l~')n. 

Po P o  

(3) 

The amplitude of the bubble oscillations is considered to be small. Then 

R = Ro(1 q-- x) = Ro (1 q-eu).  (4) 

The value of u is of the order of unity, and the perturbation parameter e lies in the range 0 < e << 1. 

Substituting Eqs. (2), (3), and (4) into Eq. (1) we obtain the equation of the motion of the bubble walls in 

dimensionless form 

eu(1 -4- eu) + 32 e2u2 - -  eJ--u - -  (l - 4 -eu ) jq -~ /2 (  12 p'P) A- 

+ ( 1 - -  W)(1 - -  rl cos o)t) q- 117 (1 + eu) -1 -4- 2bs (1 q- eu) -x t~ --. 

- - 2 b J ( 1  -k" eu) -1 - - ( I  q- eu)-av (1 q- ]1 -1- ]2) = 0, 

(5) 

Here �9 = d /d t .  
To fur ther  transform Eq. (5), we represent the vapor densi ty  in the form 

9' = P0 (1 q- eu) -~ (1 q- 11 -q- 12), (6) 

where I 1 and I2 are the contribution to the change in the density due to heat and mass transfer, respectively. Then 

Z=---~-I Z(l+eu)-~(];+i~), Po/P-~Z. (7) 
3 

Since x -- eu, for the case of the main resonance we set 

= ssP; ]1 = eagl; j~.= e392; 1 = 83ll; 

12=e3/2; b=e2B; o=o0+e~8. 
(8) 

Here, the parameters P, gl, g2, ll, 12, B, and 6 are of the order of unity. With account for Eqs. (6)-(8), Eq. (5) 

becomes 

ii + O~oU = ~ - -  �9 it + alu" + u2u + ('i, + "l~)-- 
2 2 T .  

�9 ] - -  2Bit --: a~u 3 + P cos cot + gl  + g2 + '  s3..., 

(9) 

where 
9 ? 

coo 2 --= 37--117, az = " ~ " 7 ( ?  q- 1 ) - - 2 W ,  a2 = ~ (97~q - 18~ -4- 11) - -  3W. (10) 

To analyze Eq. (9), we use the multiscale method, which was detailed in [4 ], restricting ourselves to terms 
of the order of smallness e 2. According to this method, u is a function of a set of times Tn and can be presented as a 

series expansion in powers of e: 

u (t, e ) =  u(To, T1, Tz ... s ) =  Uo (To, T1, T~. . . . )+  
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q- ettx (To, T~, T~ ...) .q- e~u~ (To, Tx, T~ ...), (11) 

where T,  = ent, n -- 0, 1, 2 . . . . .  For example, the first derivatives with respect to t have the form 

d 8 
dt = Do + eDt + e~D~ +. . . ,  ,D, = OT-'--'~ (12) 

Then, using Eqs. (11), (12) and the relation 

cot = ~ooTo + fiTs, (13) 

we group terms with the same power of s and obtain the system of equations 

D2ouo q- o~u0 ---- O, (14) 

3 z �9 Wgu~ q- ~o~tq = --2D~Dou o - -  ~ (Douo) + alum, 
(15) 

Dou~ -~- oo~u2 = --2DaDou~- D~uo-  2D~Douo - -  

3 
- -  3DluoDouo - -  3DouxDouo 5c 2a,uluo + - -7  uo (Douo) ~ ~- 

(16) 

Z ([~ _}_ 12) -I- Po cos (r -b 8T~) - -  2BDouo - -  a.~u~o --}- g~ --b g2. +-5- 
The solution of Eq. (14) has the form 

u, A (T1, T~) exp (i~d'.) + A (r~, r,) exp (--i~0r.). (17I 

The functions A(T~, T~) and A(T~, T2) are unknown, with the latter being the complex conjugate of A(T1, T2). 
In order to find Ul, we substitute Eq. (17) into Eq. (5). To eliminate the secular terms, we set 0A/0T1 = 0, 

i.e., A = A(T2), A = A(T2). Then for ul we have 

ux ---- 3c0~ -b 3 r [A ~ exp (i2woTo) -'b A~ • 

• exp (--i2cooTo)] q- ~ A ' A ( 2 a l  - -  3o~). 
r o 

Now, we express/1, /2, gl, g2 as Fourier series: 

ll = ~ 11~ exp[ik (cot + ~ik)l, gl  = s glh exp [ik (cot + #~)l. 

The expressions for 12, g2 are similar. Using Eqs. (17), (18), and (19), we transform Eq. (15) as 

(18) 

(19) 

D~ou~ ~ COoU~ = [--i2r " OA(--~ -t- BA) ~ A ~ (  '10a~3r -J- 

9 r  ~__~. o~Z tuexpi~11 o~Z 
§  3 ---S- 

q- g n  exp i~11 q- g21 exp i~21) exp i6T~)l exp (ir - -  
. ,J  

l ) -b -- '$--  ~3 exp i~2a - -  g13 exp i013 - -  g2a exp i~23 x 

(20) 
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• exp (i6T~) exp  (i3o~oTo) + e. c., 

where c,c. is the corresponding complex-conjugate terms and the remaining harmonics with k # +__ 1, +_-3. 

Let 

A 1 = a exp i (6T~ + q~). 
2- 

(21) 

The amplitude a (T2) and the phase shift ~o (T 2) depend on T2. To eliminate the secular terms in Eq. (20), we equate 

to zero the expression in the square brackets in Eq. (20) at exp(ko0To). Substituting Eq. (21) into these brackets, we 

find an equation characterizing the interrelation between a and ~. The subsequent grouping of terms of this expression 

with real and imaginary parts leads to the following system of equations: 

where 

d_.._~a = --Ba--~ P sin r w~Zt~ sin (~aa--  q~) - -  
dT~ 2too 3 

~176 sin (~1 - -  tp) -4- g~l sin (On - -  9) q- gz~ - sin (92~ - -  9), 
3 0)0 0)0 

dcp Na~ 6 P 1 [ o~oZlu 
= - - c o s ~ o +  , - - c o s ( ~ - - q ~ ) +  

dT,. 20) 0 2aO)o a L 3 

! ----f------~176 cos (~2t - -  qJ) gl----!-1O3o cos (~11 - -  q~) ' g2_______~tcoo cos (Oat - -  (p)], 

1 2 ) 1 0a~ 9 2 , 
N = ~ 30)~ + ~ 0)0 - -  5ax --- 3a., . 

(22) 

(23) 

We denote ea = c and again, according to Eq. (8), we introduce b, ~, w - w0, Jl, J2, I1, I2, with the latter four variables 

being introduced in terms of the corresponding coefficients of series (19): 

d e .  
d,r 2~oo 

sin r q- Mx sin r - -  M2 cos % 

d~ = Nc-----~-2 + 0)o - -  ~ ~ COS q~ + l 
dr  20)0 2co~o c 

(M1 cQs q~ + M~ sin q~), 

(24) 

Here 

M ~ =  0)oZ111 o~oZl~ " ]~1 - -  cos ~ u  + - -  cos ~21 - - "  hx  cos q n  - -  ~ cos q2x, 
3 3 0)0 ~ o  

M2 = r176176 sin ~11 + ~oZl~_____..~ sin %1 - -  J~___2__~ sin t~xi - -  ] ~  sin ~2~. 
3 3 0)0 0)0 

(25) 

Knowing the law of change in time of the amplitude c and the phase shift 90, we write the equation of the motion of 

the vapor bubble walls as 

x = eu = euo + e~ul = c cos (to~ + r + c ~ Icl + c~ cos 2 (0)T + q~)], 

,( 
~--- ~ ~ 0 )  , C 2  

r : 20)o al  2~ 
1 3 0)0 ) 

(al + -if- �9 

(26) 
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Fig. 1. Bifurcation diagrams and phase trajectories (24) for an oscillating vapor 
bubble under  different heat and mass transfer  conditions [1) (29); 2) (30); I, 
II) stable and unstable resonance; III) stable nonresonance ]: a) M1 = 0.055, M2 
=0;  b) M1 =0.05,  M2-- 0.01; c) M1 =0.05,  M2 = 0.03. 

If the vibrations of the bubble are stationary, then dc /dz  -- 0, d~o/dr = 0. Then,  equating to zero the left-hand 

sides of Eqs. (24), we can write the expression for c: 

�9 4o0  4c2o0 ~ ~ 
c s + c �9 ~ (o - -  Oo) + N------ T -  [b 2 + (o ~ o0)21 u 

4~176 ( M ~ N  3 + M22--@o M1 ) = 0 .  

(27) 

The phase shift for the stat ionary vibrations is 

I 1 M ,  (Oo - -  co) c - -  2o---~ c3 - 

~./2Oo -- M~' + bc 
q~ = arcsin - -  ~ Mx + M~ " 

2o. U2r M~ 

(28) 

Let us analyze qualitatively the change in the character of bubble oscillations as a function of amplitude an d  frequency 

of the external  effect in the main resonance region. For this purpose, we consider a bubble with the initial radius R0 

-- 10 -5 m. We shall tentatively assume that p = 998 kg. m -3, cr = 0.0725 N. m -1 ,/* = 0.001 kg. m -1. sec -1, P~o = 101,300 

Pa, 7 = 4/3.  The  processes of heat and mass transfer on the oscillating bubble walls were specified by the parameters  

M1 and M2. 

The  results  obta ined are presented in Fig. 1 where three  characterist ic bifurcation diagrams and the 

corresponding phase trajectories are depicted. To obtain the phase trajectories, the system of equations (24) was 

solved by the method of numerical integration. We fix the value w - o) 0 = 0.2 (Fig. la) .  It can easily be seen that if 

the value of ~ is smaller than the corresponding value on curve 1 (~ < ~1), then one type of equilibrium exists in the 

oscillating bubble system: a stable focus (see the phase trajectory),  where the bubble performs stable resonance 

vibrations. As soon as ~ = ~1, saddle-node bifurcation takes place, as a result of which three singular points appear 

in the system: two stable focuses and a saddle. Here,  stable and nonstable resonance oscillations take place (points 

I and II), as well as stable nonresonance bubble oscillations III. With a further  increase in ~, we already intersect 

curve 2 (~ = ~2)- Here,  the reverse bifurcation occurs, as a result of which one type of equilibrium exists again in the 

system - a stable focus, but here  the vibrations have a nonresonance character. The  second intersection with curve 

2 (upper branch) is again accompanied by a saddle-node bifurcation. And when we intersect curve 1 for the last time, 

instead of three singular points one stable focus exists again in the system as a result of the reverse bifurcation. Thus,  

in the system of an oscillating vapor bubble in the case of monotonic change in the amplitude of the external  effect, 
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Fig. 2. Diagram of various system states as a function of M2: 1) region of multiple 
saddle-node bifurcation; 2) region of single saddle-node bifurcation; 3) region 
of no saddle-node bifurcation. 

Fig. 3. Bifurcation diagram and phase trajectories (24) for an oscillating gas 
bubble (M1 --M2 = 0): 1) (29);2) (30); I, II) stable and unstable resonance; l i d  
stable nonresonance. 

one can observe direct and reverse saddle-node bifurcation many times. The equations for curves 1 and 2 are obtained 

from Eq. (27). They have the forms 

[ /o-o0  ]0 ~: = 2~0M: _ / - - y g -  (~o0 - ~0) b, -~ + 

(29) 
16COo3 [ (COo__~o)2 . bZj3/2 , ~1/2 

- -  4Coo2M~ , § 
N '  9 3 / 

(30) 

----9---16c~ [ (~~ 9 ~~ b2~ ]:~]2 __ 4c~176 !})1/2 �9 

The shift in frequency to the resonance side leads to the disappearance of the region with three singular points. Thus, 

when co - w0 <.0.03 (Fig. la) ,  one type of equilibrium exists in the system irrespective of the value of ~, viz., a stable 

focus (resonance vibrations), and saddle-node bifurcation is not observed. 

The character of the bifurcation diagram is determined in many respects by the value of M2. It is seen from 

Fig. lb  that within a certain range of frequencies saddle-node bifurcation and reverse bifurcation occur once with a 

monotonic change in ~, i.e., there is no curve 2 in the given region. However, in moving away from the natural 

frequency w0, a similar replacement of equilibrium states is observed in the system, just as in Fig. la.  These conditions 

are also possible for the occurrence of heat and mass transfer on the bubble wall, when saddle-node and reverse 

bifurcations occur only once in the region of the main resonance with a change in the amplitude of the external effect 

(Fig. lc). 

It is seen from Fig. 2 that as the value of w 0 - co increases, the regions of single and multiple saddle-node 

bifurcation grow. 
For comparison with the results obtained, we consider a gas bubble. Let the parameters of the oscillating gas 

bubble system be the same as for a vapor bubble, but there are no heat and mass exchange processes (M1 -- M2 = 0). 

In Fig. 3 the bifurcation diagram for an oscillating gas bubble in an incompressible fluid is presented. As is seen from 
Fig. 3, starting with w - co 0 > 0.035, saddle-node bifurcation and reverse bifurcation may occur in the system. But 
with a monotonic change in the amplitude of the external effect, this process is observed only once. In fact, when 

increases, the stable focus (nonresonance oscillations) is replaced by two stable focuses and a saddle as a result of 
saddle-node bifurcation as soon as ~ > ~2. A further increase in ~ is accompanied by reverse bifurcation at the 
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intersection of curve 1, where the system develops the stable-focus type of equilibrium (resonance oscillations). A 

similar single character of saddle-node bifurcation is observed for an oscillating gas bubble in a compressible fluid 

[81. 
Based on the results presented above, it is possible to determine the character of the change in the bubble 

vibration parameters, namely, the amplitude and phase, with a change in the amplitude of the external effect on the 

bubble. Thus, knowing the dynamics of the change in the amplitude and phase, we may determine the character of 
the vapor bubble oscillations at any instant. 

In conclusion it should be noted that the considered mechanism of the replacement of the stable states of a 

vapor bubble in the main resonance region is the initial stage in the transition from regular to random oscillations. 

N O T A T I O N  

R, Ro, instantaneous and equilibrium radii of the bubble; z, time; p', p, densities of the vapor and liquid 
phases; a, surface tension coefficient;/t, viscosity; f2, frequency of the external effect; co 0, dimensionless natural 
frequency of the system; P*, constant pressure; Pa, amplitude of the external effect amplitude; 7, polytrope index; 
P0, constant density of the vapor; 09, dimensionless frequency of the external effect. 
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